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Current-density-functional theory for a non-relativistic 
electron gas in a strong magnetic field 
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lnstitut fur TlIwrctische Physik, 7kchnische UniversiUt Dresden, Mommsenstrasse 13, 
0-8027 Dresden, Federal Republic of Germany 

Received 14 May 1991 

Abstract A currenl.density-functiona1 theory is formulated in terms of the physical 
gauge-invariant current density instead of the ‘paramagnetic’ or canonical current density 
used previously by Vignale and Rasolt. The appropriate energy functional is obtained 
by a pmeedure of ‘constrained search’. An equivalent Hohenberg-Kohn theorem is also 
proved and KohnSham equations are derived. The possibilify of local approximations is 
discussed. As a by-product a generalized Ritz inequality for systems in a magnetic field 
is found. 

1. Introduction 

Density-functional theory based on the fundamental papers of Hohenberg and Kohn 
(1964) and Kohn and Sham (1965) has developed into a powerful tool for the study of 
electronic structure in condensed matter physics and quantum chemistry. The exten- 
sion to the fully relavistic case was originally formulated by Rajagopal and Callaway 
(1973) (cf also Eschrig el a1 1985). In this relativistic theory the external potential 
CP and density n are replaced by analogous 4-veetors, the 4-potential ( @ / c ,  d) and 
4-current density (nc , j ) ,  respectively. However, the dependence on the current den- 
sity j must be conserved also in the limiting case of a non-relativistic electron gas 
if a strong magnetic field B = curl A is applied. A corresponding current-density- 
functional theory was developed by Vignale and Rasolt (1987, 1988). A strange 
feature of their theory consists in the fact that they use a non-physical ‘paramagnetic’ 
current density j ,  which is not gauge invariant whereas in the relativistic formulation 
the physical gauge-invariant quantity j o m r s  in a natural way. In the Vignale-Rasolt 
theory gauge invariance must be ensured by a restricting condition on the choice of 
the exchange-correlation energy. 

The aim of this paper is to present an alternative current-density-functional the- 
ory for non-relativistic particles in a magnetic field using the gauge-invariant current 
density j .  For the sake of simplicity the considerations start with a system of spin- 
less particles obeying a many-particle Sehrijdinger equation. An appropriate energy 
functional is constructed in section 2 and the corresponding variational principle is 
established. A by-product of these developments is a modified Ritz principle for the 
ground state of a system in a magnetic field outlined in section 3. It consists in an 
inequality for the ground state energy which is stronger than the usual one. This 
new principle enables us to derive a Hohenberg-Kohn theorem for our system in 
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presence of a magnetic field according to which the density n and current density j 
of the ground state uniquely determine the external fields E and B (the potentials 
@ and A being determined up to an arbitrary gauge transformation). This is done 
in section 4. Section 5 sketches one of the possible ways to include the electron 
spin in the formalism by introducing a total current density comprising both orbital 
and spin contributions. Another approach, not developed in this paper, would be 
to maintain an orbital current density and to describe the influence of the spin with 
the help of spin densities (and associated spin current densities) as did Vignale and 
Rasolt in their paper. Finally, in section 6, KohnSham equations are derived from 
the variational principle. They differ from those found in the formalism of Vignale 
and Rasolt by a simpler form of the effective potentials. A discussion of possible 
local approximations completes the paper. 

2. Energy functional 

Let’us start with the Hamiltonian for a system of N spinless particles in an external 
magnetic field 

where A and bp are external potentials and U denotes the interaction energy. The 
charge of the particles is -e. An arbitrary state of the many-body system is described 
by an antisymmetric wavefunction *(rl . . .rN). The corresponding particle density 
is 

and the ‘paramagnetic’ or ‘canonical’ current density is performed with the operator 
of the canonical momentum 

j, = - R e j d 3 r , . , .  N d 3 r ,  a’--*. h a  
m i ar, (3) 

As long as the vector potential is not k e d ,  the physical current density j belonging 
to a given state rY is complctely undetermined. An arbitrary j can be obtained by an 
appropriate choice of the vector potential a 

This equation associates a vector potential a [ @ , j ]  to a given state * and to a 
required current density j. In the following one has to distinguish between this trial 
a and the actual vector potential A. For stationary States the continuity equation 
requires 

aj lar  = 0.  (5) 
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Using definitions (3) and (4) one can write down the identity 

+ e / d 3 r  ( j A  - nQi) + / d 3 r  - ( A  e2n - U) 2 
2m 

The first term on the rhs depends on the state P and the assumed current density 
j, but is independent of the actual fields A and Qi. Adopting the procedure of 
'constrained search' of Levy (1979) one can define a new functional by minimiig 
this term with respect to Q for fured n ( r )  and j ( r )  

Note that a depends on the state V! via (4). In the usual density-functional theory 
the Levy functional suffers from non-convexity. Lieb (1983) overcame this difficulty 
by admitting in the minimization not only pure states, but also mixed states described 
by a density operator e. Similarly, one could also modify definition (7) by minimizing 
with respect to mixed states 

F'[n, j ]  = infTr(H,e) < F [ n , j ]  
n J  

For the sake of simplicity, however, we use the functional (7). Furthermore, we as- 
sume that there is a minimum state QM with an associated vector potential aM[r; n, j]  
such that 

F[n,i l  = (QMIH~~I'J'M). (9) 

It is shown in Appendix A that QM and aM are not unique. In fact, one can carry 
out a gauge transformation of rYM and aM without changing the value of F provided 
that j satisfies the continuity condition (5). If (5) would not hold, any result for the 
expectation value in (7) could be generated by a simple gauge transformation and, 
therefore, a minimum would not exist. Thus the functional is only defined for current 
densities obeying equation (5). 

E[n , j ;Qi ,A]  : = F [ n , j J + e / d 3 r  [ j A - n @ ]  < ( P J H / V ! ) - / d 3 r  - - (A-a ) ' .  ne2 

(10) 

Inserting the functional F in the identity (6) leads to the relation 

2m 

This inequality holds for any rY possessing the given n. Note that the vector potential 
a depends on Q and is determined by (4). In the next step let us choose j such that 
the vector potential U, in F equals the extemal potential A 

u M [ n , i ]  = A -+ j = j [ n , A ]  = jA. (11) 



9420 G Diener 

The resulting current density is denoted by jA and may be found from the stationarity 
condition 

6 E  = E [ j A  + 6j] - E [ j A ]  = 0 (12) 

as shown in appendix B. Note that this condition does not provide us an absolute 
minimum of the functional E, as also discussed in appendix B . In fact, the functional 
E tends to minus infinity for infinitly growing IjI. Inserting the special choice (11) in 
the Ihs of (10) and defining 

Qkf -+ Q[n ,A]  = qA for aM - A  (13) 

one obtains 

E [ n , @ , A l =  (QAIHAIQA) + e / d g r  [ ~ A A  - n@l=  (QAIJ~IQA).  (14) 

In the last equality identity (6) is used with a = A. Thus, (10) becomes 

where Q and Q A  have the same density n and a is now determined by 

(16) 
m 

a =  ; ( i ~ [ n , A ]  -&[*1). 

Further, if one minimizes the Ihs of (15) with respect to n 

E , [ @ , A ]  := min('DAIHI'DA) (17) 

and omits the negative term on the right-hand side of (15), one obtains 

Eo< (lUlHIQ) (18) 

which holds for all Q. Thus, E, represents the ground-state energy, and the 
corresponding density no, current density j, = jA[n , ,A]  and wave function 
Q, = Q A [ n o , A ]  also describe the ground state of the system. Summarizing the 
above considerations, one can conclude that the ground-state density no and current 
density j, for a given 4-potential bp, A satisfy the variational principle 

EE[n,j;bp,A] = E { F [ n , j ]  + e / d 3 r  ( i A  - n @ ) )  = 0 .  (19) 

Let us keep in mind, however, that according to the remark following (12) the ground 
state does not correspond to an absolute minimum of the functional E. 
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3. Generalized Ritz inequality 

Now we consider relation (15) especially for the ground-state density 

(20) 
e2n Eo = ( Q o ~ H ~ Q o )  6 (QIHJQ) - I d 3 ,  %(A - a)'. 

The inequality hoIds for any G possessing the same density n = no as the ground 
state where a is connected with the ground state current j ,  by 

(21) 
m 

a = - ( j  0 - j  PI Q I) ( n =  710). 
en0 

Moreover, it follows from (15) and (17) that (20) is also valid for an arbitrary Q with 
density n # no and with a determined by 

m .  
a = ;(3.Jn,Al -&IQ]) (22) (n  # 4. 

The inequality (20) is stronger than the ordinaly Ritz principle 

Eo = ( Q O I ~ I Q O )  4 (QIHIW. (23) 

An obstacle for the application of (20), (22) is the fact that, in general, the functional 
j ,  will be unknown. Equality in (20) holds if and Go differ only by the gauge 

Then 

2 x -e /d3r  iodx t J d 3 r  e2no (2) . 
ar 

The first term in the last l i e  vanishes because 

Therefore 
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O n  the other hand, one has 

Insertion in (21) yields 

This relation together with (25) leads to 

Thus, contrarily to the ordinary Ritz principle (23) the stronger inequality (20) reduces 
to an equality for all wave functions that differ from the ground state only by the 
gauge. 

4. €lohenberg-Kohn theorem 

The generalized Ritz principle enables us to prove a Hohenberg-Kohn theorem for a 
system subject to a magnetic field. The theorem asserts that the ground state density 
no and current density j ,  uniquely determine the external fields E and B. The 
potentials @ and A are determined up to the gauge. The proof can be given along 
the same lines as argued Vignale and Rasolt (1988). Suppose there were two different 
ground states 90, Q; belonging to different potentials @,A and @',A', respectively, 
but giving the same density no and current density j,. The state8 are assumed to 
differ by more than a gauge transformation. Then (20) becomes 

The expectation value on the right-hand side may be transformed into 

- A')' - e(@ - @') 

With the notation Eh = (UblH'lUL), equation (31) becomes 

E, < Eh + e d3r [jo(A -A ' )  - no(@ - e')]. (33) J 
Interchanging the primed and unprimed quantities and summing the two inequalities, 
one obtains 

Eo+EA<EA+Eo.  (34) 
This contradiction shows that the assumption at the beginning was wrong. It is 
excluded that physically different external fields lead to the same ground state density 
no and current density jw Observe that the theorem is now proven for the gauge- 
invariant physical current density j, whereas Vignale and Rasolt derived it for the 
canonical current density j , .  
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5. Particles with spin 

9423 

The above considerations can easily be extended to particles with spin described by 
the Pauli equation. One has to add the term 

N 

b=l 
(35) 

to the Hamiltonian (1). The wavefunction becomes a two-component quantity for 
each particle. Consequently, in the definitions (2) and (3) of n and jp, Q *  has to be 
replaced by rYt. Due to the spin magnetization M there is an additional contribution 
to the curreot density (4) 

a e n  
ar m 

j = j, + - x M + -a 
with 

(36) 

For stationary states the total current density satk---s again (5). The supplemen- 
tary term with M does not contribute to the divergence. The identity (6) remains 
unchanged. The additional term occurring in the expectation value of H on the 
left-hand side 

= j d 3 r e M B  = e j d 3 r M  ($ x A) = e /d3rA ($ x A4) (38) 

is compensated by the spin contribution in the integral eJd3r  j A  on the right-hand 
side. All further considerations are based on the identity (6) and, therefore, remain 
valid. The only modification consists in the replacement 

% 
ar jp[ly] - jPM[rY]  := jp + - x M. (39) 

Thus, the resulting energy functional E[n,j ,  @,A] (IO) and the Hohenberg-Kohn 
theorem now involve the total current density (36) comprising both orbital and spin 
effect$. However, despite the principal existence of this formalism, its practical appli- 
cability is questionable. The problem is to find sufficiently simple expressions for the 
energy functional. 

An alternative and perhaps more promising way to incorporate spin effects in the 
formulation could be the use of spin-polarized densities or, more precisely, a density 
matrix nbb, and a corresponding current matrix j,,, defined analogously to (2) and 
(3). The extension of the above considerations to this case is straightforward and will 
not be written down here. 
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6. Kohn-Sham equations 

In a manner that it analogous to  the usual KohnSham theory, the variational prin- 
ciple (19) can be transformed into effective one-particle - equations. The functional F 
(7) has to be decomposed into 

F [ n , j ]  = Fo[n, i l+ E,[nI + E,,[%il 

where Fo represents the functional of a non-interacting system expressed through 
one-particle states + k .  The so-called Hartree energy EH is the electrostatic energy of 
the mean charge distribution and E,, comprises ail correlation and exchange effects. 
The minimization in Fo has to be carried out under the constraints 

k 

The last line shows that, due to the fixed j, the variation of 4k is in general connected 
with a variation of a. In (41) the spin contribution is included according to section 
5. The theory of spinless or spin- polarized particles is easily recovered by omitting 
all terms involving the spin operator. 

Instead of minimizing F, under the constraints (41) and then varying n and j 
in the energy functional E according to (19), one can abbreviate the procedure by 
varying E with respect to 4 k  and a without constraints (except normalization). Thus 

r 

E = F, + E, + E,, + e J  d3r[jA - n@] 

for arbitrary variations of 4 k  and a. The resulting expressions are 
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Inserting these expressions in (42), performing some integrations by parts and then 
comparing all terms with 64: and with 6u, respectively, one finds 

Formally, these KohnSham equations look a little simpler than those obtained by 
Vignale and Rasolt, where A und A,, are also involved in the effective- potential 
term. A detailed comparison of both formalisms is difficult, however, because the 
definitions of the E,, energies do not coincide completely. In (44) spin and orbital 
currents couple to the same effective magnetic field Aew Note, however, that in the 
present formulation only n and j have a physical meaning. The +k and, consequently, 
their spin and orbital magnetizations are only auxiliary functions without direct phys- 
ical interpretation. This would be different in a formulation treating separately spin 
polarization and orbital currents. 

7. Discussion 

The above considerations show that in the case of the non-relativistic electron gas 
there exists a current-density formalism based on the physical current density j instead 
of the canonical or paramagnetic current density j,. The question whether to use 
an energy functional depending on j or on j,, is more a practical than a principal 
one. The usefulness of each of the different formalisms depends on the possibility 
of finding simple and reasonable approximations for the exchange-correlation energy 
Ext. Nevertheless it is important to know that there is no principal discrepancy 
between a fully relativistic theory usually formulated in terms of the gauge-invariant 
current j P  and the non-relativistic limit discussed in this paper. For practical purposes 
a local approximation of the energy functional E,, j, desirable. In order to find an 
appropriate energy density e,,,one has to consider the limiting case of a homogeneous 
electron gas at rest. Then e,, is completely determined as a function of the density 
n and the magnetic field B.  By definition, this field is related to the current densities 
j and jp via the equations 

A local expression for the energy density using the current j or its derivatives is not 
conceivable in the homogeneous limit, since j then vanishes inside the system. Then 
(45) implies that E can be expressed by the canonical current j, 
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Now, if we consider a moving electron gas and want to desribe it by the same 
energy density e, , (n,B) as the gas at rest, we have to choose a local coordinate 
system moving together with the electron gas and, therefore, rotating with the angular 
velocity 

In a rotating system, however, there is an additional force, the Coriolis force. It has 
the same form as the Lorentz force and can therefore be taken into account in eyc 
by the simple replacement 

These considerations are in favour of the formalism developed by Vignale and Rasolt 
(1987, 1988). In many practical cases, however, the difference between j and j ,  can 
expected to be small and the use of them to be equivalent. This will be true, in 
particular, for rapidly moving electrons which need a relativistic treatment. 
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Appendix A. Gauge invariance of F 

The functional F defined in (7) and (9) is invariant with respect to the gauge trans- 
formation 

where x is an arbitrary function. Inserting the replacement (AI) in expression (9) 
yields 
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Integration by parts in the last term leads to 

Thus, F is gauge invariant for all j satisfying the continuity equation (5). In the 
opposite case any value of (A2) and, consequently of the expectation value in F can 
be obtained by an appropriate choice of x and a minimum does not exist. 

Appendix B. Variation of F 

F is obtained from a minimization of ( Q I H J Q )  under the constraints of given n and 
j = j,[Q] + en/  ma. The minimizing functions QM and aM obey the variational 
condition 

6 { ( w % M l Q h d  - J d 3 r [ p ( W )  + 4r)j(r)l l  = 0 (B1) 

where p and IC are Lagrange parameters. The resulting equations are 

M tc = -ea 

Here, p and R must be chosen such that n and j are obtained. Now the variation 
of F reads 

6 F  = 6 ( Q & l l H a ~ I w M )  

Inserting equation (B2) for Qbf leads to 

- / d 3 r  maM6aM e% 

= / d 3 r ( p 6 n - e a M 6 j ) .  

For k e d  n the variation (12) of E gives 

6E = d 3 r  e ( A -  aM)6 j .  (B5) J 
The variation of j is restricted by the continuity equation (5). Therefore, the station- 
arity condition leads to 

(B6) 
OX 

M -  ar 6 E = O - + A - a  - 
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with an arbitrary x. According to appendix A one can carry out an appropriate gauge 
transformation of !ZM and aM to obtain aM = A. The stationarity condition (12) 
does not correspond to an absolute minimum of E. This can easily be seen from 
(10) in connection with (4) 

For b e d  @ the right-hand side tends to minus infinity if ljl + CO. The same must 
hold for the left-hand side. Thus, there is no absolute minimum of E[n,j]. 
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